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Abstract
We construct representations of a q-oscillator algebra by operators on Fock
space on positive matrices. They emerge from a multiresolution scaling
construction used in wavelet analysis. The representations of the Cuntz algebra
arising from this multiresolution analysis are contained as a special case in the
Fock space construction.

PACS numbers: 02.30.Gp, 02.20.−a, 02.30.Tb

In this paper we establish a connection between multiresolution wavelet analysis on one hand
and representation theory for operator on Hilbert spaces depending on a real parameter on
the other. These operators arise from a multiresolution wavelet analysis based on Bessel
functions. We wish to develop a framework for the study of creation operators on Hilbert
space, satisfying simple identities, and allowing a Hopf algebra structure. Examples will
include oscillator algebras coming from physical models.

In the first section of the paper, we review the background and the motivation for the
study of the q-relations, both as it relates to problems in mathematics and in physics. On the
mathematical side, the problems concern wavelet analysis and transform theory, especially
the Mellin transform, and on the physics side, they relate to the quon gas of statistical
mechanics. For the construction of the representations, we then turn to the twisted Fock space
and the q-oscillator algebra. Our approach is motivated by wavelet analysis, and it uses a
certain loop group. Our main result is theorem 6.

1. Introduction

Some of the results from the papers [2, 3, 6] are based on an operator-theoretic approach to
wavelet theory involving representing wavelets in terms of operators in an infinite-dimensional
Hilbert space.

In this paper we introduce an analogous operator approach in a study of a generalized
biorthogonal wavelet, leading to the construction of oscillator algebras, and more generally
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Hopf algebras. In [7] a related class of representations of the Cuntz algebra ON have been
found depending on a parameter q.

We shall distinguish between two aspects of the study of the q-relations: (i) the
C∗-algebra on these relations, and (ii) finding the representations of them. While the paper [8]
by Jorgensen et al covered (i), we shall concentrate here on (ii). This is a difficult problem: as
noted in [8], the C∗-algebra A(q) on the q-relations is infinite, and its equivalence classes of
irreducible representations do not admit a Borel cross section for its classification parameters.
In [8], the authors showed that there is a stability interval J in the q-variable such that all the
C∗-algebra A(q) for q ∈ J are isomorphic to the Cuntz algebra, see [1], and they estimated
the size of J .

The motivation for the problem (ii) comes from two sources, (a) from analysis (wavelets,
special functions and combinatorics), and (b) from physics (quantum optics, statistical
mechanics, quantum fields and anyons). We show in this paper how these problems may
perhaps be understood better via the approach of q-deformations, and via the study of concrete
mathematical settings where the representations arise naturally.

Other papers which cover representations include [1], [10] and [11]. The physics of the
q-relations is outlined in [1, 4, 12]. In particular [12] relates the q-representations to the Gibbs
paradox.

The C∗-algebra ON , called the Cuntz C∗-algebra on N generators, is universal on the
relations

s∗
i sj = δij1

N∑
i=1

sis
∗
i = 1 (1)

where 1 denotes the unit element in ON . If m1, . . . ,mN are given functions on T = {z ∈ C :
|z| = 1}, then the operator system

(Sif )(z) = mi(z)f (zN) f ∈ L2(T) z ∈ T i = 1, . . . , N

satisfies the Cuntz relations (1) if and only if the functions are frequency subband filters for
the wavelet multiresolution construction [9]. Then m1 is called the low-pass filter, and the
others filters of the higher frequency bands.

The conditions on the functions may be stated in either one of the following two equivalent
forms (a) or (b): Let ρN = ei2π/N .

(a) The N × N matrix

M(z) = 1√
N

(
mj

(
ρk

Nz
))N

j,k=1

is unitary for all z ∈ T, i.e.,

M(z)∗M(z) = IN z ∈ T.

(b) The N × N matrix A(z) = (Aj,k(z)) given by

Aj,k(z) = 1

N

∑
w∈T
wN=z

mj (w)w−k

is unitary for all z ∈ T, i.e.,

A(z)∗A(z) = IN z ∈ T.

To complete the picture of multiresolution analysis depending on a parameter we include
here the case of the construction of a different multiresolution via the Mellin transform. We
develop a finite-scale multiresolution analysis via Mellin transforms giving rise to wavelets
depending on a parameter q, 0 < q < 1.
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2. Mellin transforms

Let us first recall some facts about Mellin transforms. The Mellin transform of a function
f (x) is given by

M(f (x); s) =
∫ ∞

0
xs−1f (x) dx.

The inverse transform gives

f (x) = M−1(F (s); x)

where we set M(f (x); s) = F(s).
The behaviour of the Mellin transform under various coordinate transforms in x space is

given by

M(f (ax); s) = a−sM(f (x); s)

M(f (xa); s) = a−1M
(
f (x); s

a

)
M(xaf (x); s) = M(f (x); s + a)

as can be easily checked.
Let us give some preliminaries on standard multiresolution wavelet analysis of scale N.

Define scaling by N on L2(R) by

U(ξ)(x) = ξ(N−1x)

and translation by 1 by

T (ξ)(x) = ξ(x − 1).

A scaling function is a function φ ∈ L2(R) such that if V0 is the closed linear span of all
translated T kφ, k ∈ Z, then φ has the following properties:

(a) {T kφ : k ∈ Z} is an orthonormal set in V0,
(b) Uφ ∈ V0,
(c)

∧
n∈Z UnV0 = {0},

(d)
∨

n∈Z UnV0 = L2(R),

where the symbol
∨

means ‘closed linear span’, and
∧

‘intersection of subspaces’. We shall
further use the notation Uj := UjV0, j ∈ Z. The system a.–d. is called a multiresolution
analysis (MRA).

We then have the following result

Theorem 1. Let � ∈ L2(R) be the Haar function, 0 < q < 1, q ∈ R. There exists a sequence
of subspaces Uj , j ∈ Z, such that

· · · Uj ⊂ Uj−1 ⊂ · · · ⊂ U0 ⊂ U−1 ⊂ · · · (2)

giving a multiresolution satisfying the above properties.

Proof. To show that the system in (2) is a multi-resolution, we need to establish a scaling
operator which moves in steps of one through the ladder of resolution spaces Uj ; we must
identify the Hilbert space H; and finally we must show that

∨
j Uj = H, and

∧
j Uj = {0}

where
∨

and
∧

are the usual lattice operations in Hilbert space.
Let � ∈ L2(R) be the Haar function, 0 < q < 1, x ∈ R. We want to prove that

there exists a sequence of subspaces Uj giving rise to a multiresolution satisfying the above
properties. Define

V0 =
∨

{�(qkx) : k ∈ Z, q < x < 1}.
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Let Uξ(x) = 1√
N

ξ(xN) be the scaling operator and T ξ(x) = ξ(qx) playing the role of

the ‘translation operator’. In this case T is a dilation. Then the set {�(qkx) : k ∈ Z} is
orthonormal in L2(R+), q ∈ R, 0 < q < 1, since the intervals are disjoint for h �= k, h, k ∈ Z.
It is easy to verify that U� ∈ V0,

U�(x) =
∑

k

ak�(qkx). (3)

Then
∧

n∈Z UnV0 = {1}. Suppose ξ ∈ UnV0, with ξ(x) = Un�(x) = ∑
k ak�((qkx)Nn) 1

Nn
.

Since any ξ ∈ L2(R+) can be approximated by step functions and R+ = ⋃
k,n[q(k+1)Nn, qkNn],

it follows that ∨
n∈Z

UnV0 = L2(R+).

Hence the above properties are satisfied and the sequence Vj = UjV0 of subspaces Vj

associated to � defines a multiresolution. Let � ∈ L2(R) satisfy (3). Define the operator
W�: L2(R) −→ L2(R), called the wave operator, by

(W�f )(x) =
∑
k∈Z

ck�(qkx) =
∑
k∈Z

M(f (qkx); s)�(qkx). �

Lemma 2. The operator W� satisfies

UW� = W�S (4)

where S is given by

M(Sf )(s) =
∑

j

ajq
−sjM

(
f ; s

N

)
.

Proof. First, we have

(UW�f )(x) = 1√
N

(W�f )(xN) = 1√
N

∑
k∈Z

M(f (qkNxN); s)�(qkNxN)

= 1√
N

∑
k∈Z

q−ksNM
(
f (x); s

N

)
�(qkNxN)

= 1√
N

∑
k∈Z

∑
j∈Z

q−ksN−sjajM
(
f (x); s

N

)
�(qkN+j xN)

= 1√
N

∑
k∈Z

[∑
l∈Z

al−Nkq
−lsM(f (x); s)

]
�(qlxN).

On the other hand

W�(Sf )(z) =
∑
k∈Z

M((Sf )(xqk); s)�(qkx)

=
∑
k∈Z

M((Sf )(xqk); s)�(qkN+j xN)

=
∑
k∈Z

∑
j∈Z

q−kNs−sjajM
(
f (x); s

N

)
�(qkN+j xN)

=
∑
k∈Z

∑
l∈Z

al−kNq−lsM
(
f (x); s

N

)
�(qlxN).
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Thus

UW� = W�S

which is the identity (4), i.e., W� intertwines the operators U and S. �

Using the fact that {T k� : k ∈ Z} is an orthonormal set in L2(R) we may define

F�: V0 −→ L2(R)

an isometry which sends

ξ �−→ m(s) =
∑

k

akq
−ks ξ(s) =

∑
k

ak�(q−kx).

Then

M(ξ(x); s) = m(s)M(�(x); s)

where M(ξ(x); s) is the Mellin transform.
If ξ ∈ V−1 = U−1V0 then Uξ ∈ V0 so we define

mξ = F�(Uξ) ∈ L2(R)

and then

M(Uξ(x); s) = M

(∑
k

ak�((qkx)N); s

)
=
∑

k

akM(�((qkx)N); s)

=
∑

k

akM(�(qkNxN); s) =
∑

k

1

N
akq

−ksNM
(
�(x); s

N

)
.

Thus

NM(Uξ(xN); s) = mξ(s)M(�(x); s). (5)

Observe that in this case we do not have unitarity of the matrix A generated by the filters
mξ . Thus we do not have representations of the Cuntz algebra. This brings out the question of
what are the natural operator relations associated to this MRA. One particular choice is given
by the oscillator algebras.

For any MRA wavelet construction as found above we construct an appropriate oscillator
algebra such that the filters make up the eigenfunctions system of the oscillator Hamiltonian,
i.e., the energy operator.

In fact the non-unitarity of the matrix given by the MRA filters provides the eigenfunctions
for the energy operator. The q-oscillator algebra is given by the operators a−, a+ and the
number operator. By a standard argument it is possible to build up the following selfadjoint
operators:

X =
√

2

2
(a+ + a−) and P =

√
2

2
(a− − a+)

which are the momentum and the position operators. Given the above MRA there exists a
family of q-oscillators that can be represented via the filters.

Let H = m2
0(s) + m2

0(σ (s)) be the energy operator. Let

a−(s)a+(s) = m0(σ (s))2

and

a+(s)a−(s) = m0(s)
2.
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Then it follows that the algebra is generated by a+, a−, N and the generators satisfy the
following relations:

[a−(s), a+(s)] = f (N + 1) − f (N) = f (N)[s]q−2

f (N)a−(s) = a−(s)f (N − 1)

f (N)a+(s) = a+(s)f (N + 1)

where f (N + 1) − f (N) = ∑
k bkq

−2ks [s]q−2 .
Thus we have

[a−(s), a+(s)] = m0(s)
2[s]q−2

where [s]q = 1−qs

1−q
. Then using MRA we can construct a family of operators

{
a−

i (s), a+
i (s)

}
for i = 1, . . . , N satisfying[

a−
i (s), a+

i (s)
] = mi(s)

2[s]q−2 .

A representation of the operators a−(s) and a+(s) can be realized in a Fock space as
follows:

a−(s)|ek〉 = q

1 − q

∑
k

bkq
−ks |ek−1〉

and

a+(s)|ek〉 = q

1 + q

∑
bkq

−(k+1)s|ek+1〉. �

3. Twisted Fock space

In this section we introduce a new Fock space construction, see [6], which may provide the
appropriate framework for studying wavelet representations of certain q-oscillator algebras.

Definition 3. The full Fock space over CN where N is a fixed positive integer with N � 2, is
the orthogonal direct sum of Hilbert spaces given by

K =
( −1∑

k=−∞

⊕(CN)⊗−k

)
⊕ C = · · · ⊕ (CN ⊗ CN) ⊕ (CN) ⊕ C.

The term C in the summand on the right designates the vacuum vector (in the formula we
omit a special symbol � for the vacuum vector). Let {ξ1, . . . , ξN } be a fixed orthonormal
basis for CN . Then K is an infinite-dimensional Hilbert space with orthonormal basis given
by {ξi1 , . . . , ξik : 1 � i1, . . . , ik � N, k � 1} ∪ {�}.

3.1. Construction of twisted Fock space

Let K be a Hilbert space. We take the tensor product of the full Fock space with H, then
we define a ‘new’ inner product 〈·, ·〉� by using a completely positive map from the complex
matrices into B(H) (i.e., a positive matrix with entries in B(H)). By following [6] we construct
the twisted Fock space as follows. Let �: MN −→ B(H) be the completely positive map
which we will define later. We define the N-variable pre-Fock space over K to be the vector
space of finite sums

TN(H) =


∑

|w|�k

w ⊗ hw : w ∈ F+
N, k � 1, hw ∈ H



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where F+
N is the unital free-semigroup on N non-commuting letters {1, 2, . . . , N} with unit

e. We can think of the full Fock space as l2
(
F+

N

)
where an orthonormal basis is given by

the vectors
{
ξw : w ∈ F+

N

}
corresponding to the words w, |w| is the word of length zero or

empty word, ξw = ξi1 ⊗ · · · ⊗ ξin , w = i1 · · · ik ∈ F+
N . Then a vector (i1, . . . , ik) ⊗ h with

w = i1 · · · ik ∈ F+
N corresponds to the vector ξi1 ⊗ · · · ⊗ ξin ⊗ h in (CN)⊗k ⊗ H .

Let � be the completely positive map �: MN −→ B(H). Define a form

〈·, ·〉�: TN(H) × TN(H) −→ C

as follows. For w,w′ ∈ F+
N, h, h′ ∈ H

(i) 〈e ⊗ h, e′ ⊗ h′〉� = 〈h | h′〉;
(ii) if |w| �= |w′| then 〈w ⊗ h,w′ ⊗ h′〉� = 0;

(iii) if w = i1 · · · ik, w′ = i ′1 · · · i ′k, then

〈w ⊗ h,w′ ⊗ h′〉� = 〈
h
∣∣�(ei1i

′
1
⊗ · · · ⊗ eiki

′
k

)
h′〉.

Extend 〈·, ·〉� to TN(H) × TN(H) as linear in the first variable and conjugate linear in the
second one. From theorem 4.5 of [6] the form 〈·, ·〉� is positive semi-definite on TN(H).

Definition 4. Let N� = {x ∈ TN(H) : 〈x | x〉� = 0} be the kernel of the form 〈·, ·〉�. Define
the Fock space of � over H to be the Hilbert space completion

FN(K,�) = TN(H)/N�

〈·,·〉�
.

The left creation operators T = (T1, . . . , TN) onFN (H,�) are linear transformations defined
by

Ti(w ⊗ h + N�) = (iw) ⊗ h + N�.

These operators are well-defined and Ti(N�) ⊂ N�, 1 � i � N .
Let Si be the ith creation operator on the first space defined as follows:

Six = Si

(
ηi1 ⊗ · · · ⊗ ηik ⊗ h

) = ηi ⊗ ηi1 ⊗ · · · ⊗ ηik ⊗ h

for vectors x = ηi1 ⊗ · · · ⊗ ηik ⊗ h. Define a twisted new Fock space as

TN(H) =


∑

|w|�k

w ⊗ hw : w ∈ F+
N, k � 1, hw ∈ H




as before.
We define a form

〈·, ·〉�: TN(H) × TN(H) −→ C

as follows. For w,w′ ∈ F+
N, h, h′ ∈ H

(i) 〈e ⊗ h, e′ ⊗ h′〉� = 〈h | h′〉;
(ii) if |w| �= |w′| then 〈w ⊗ h,w′ ⊗ h′〉� = 0;

(iii) if w = i1 · · · ik, w′ = i ′1 · · · i ′k, then

〈w ⊗ h,w′ ⊗ h′〉� = 〈
h
∣∣�(ei1σ (i′1) ⊗ . . . ⊗ eikσ (i′k))h

′〉,
with i(σ ) = #{(i, j) ∈ {1, . . . , N}2 : i < j, σ (i) > σ(j)}.
We need the map φ being completely positive and then 〈·, ·〉� is positive semi-definite:

�̃(ei ⊗ ej ) = �
(
ei ⊗ P (N)

q ej

)
.
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Let us now turn to the construction of the multiresolution wavelet analysis.
Suppose we have two pairs of filters and then we have two pairs of scaling functions plus

wavelet �,
 and �̃, 
̃ . They are defined by

�̂(ξ) = m0(ξ/N)�̂(ξ/N) 
̂(ξ) = m1(ξ/N)�̂(ξ/N)

ˆ̃�(ξ) = m̃0(ξ/N) ˆ̃�(ξ/N) ˆ̃
(ξ) = m̃1(ξ/N) ˆ̃�(ξ/N).

We want to take the direct sum of two MRA. We have the following two sequences of successive
approximation spaces Uj and Ũ j . The closed subspaces satisfy

· · · V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · (6)

with ∨
j∈Z

Vj = L2(C)
∧
j∈Z

Vj = {0}

· · · Ṽ2 ⊂ Ṽ1 ⊂ Ṽ0 ⊂ Ṽ−1 ⊂ Ṽ−2 ⊂ · · · (7)

with ∨
j∈Z

Ṽj = L2(C)
∧
j∈Z

Ṽj = {0}.

Formulae (6) and (7) have the additional requirements

f ∈ Vj ⇔ f (Nj ·) ∈ V0 f̃ ∈ Ṽj ⇔ f̃ (Nj ·) ∈ Ṽ0

i.e., all spaces are scaled versions of the central space V0 and Ṽ0, respectively. For every
j ∈ Z, define Wj to be the orthogonal complement of Vj in Vj−1 and W̃j the orthogonal
complement of Ṽj in Ṽj−1. We have

Vj−1 = Vj ⊕ Wj Ṽj−1 = Ṽj ⊕ W̃j .

Also Wj ⊥ Wj ′ if j �= j ′ and W̃j ⊥ W̃j ′ if j �= j ′. Define a sequence of successive
approximation spaces

Y1 = V1 ⊕ Ṽ1 Y0 = V0 ⊕ Ṽ0 Y−1 = V−1 ⊕ Ṽ−1 Y−2 = V−2 ⊕ Ṽ−2, . . .

such that if f (t, s) is in Yj then f (Nt,Ns) and all f (t − k, s − k) are in Yj+1. Define Ŵj to
be the orthogonal complement of Vj ∩ Ṽj in Yj−1. Then

Ŵj = (Vj ∩ Ṽj )
⊥ ∩ Yj−1 = V ⊥

j ⊕ Ṽ ⊥
j ∩ Yj−1.

Thus

Yj = (Vj ⊕ Ṽj ) = (Vj−1 ⊕ Wj) ⊕ (Ṽj−1 ⊕ W̃j )

= (Vj−1 ⊕ Ṽj−1) ⊕ (Wj ⊕ W̃j ) = Yj−1 ⊕ Ŵj

which implies Yj = Yj−1 ⊕ Ŵj , where we set Ŵj = Wj ⊕ W̃j . Then

Ŵj = Wj ⊕ Ŵj = (
V ⊥

j ∩ Vj−1
)⊕ (

Ṽ ⊥
j ∩ Ṽj−1

)
= (

V ⊥
j ⊕ Ṽ ⊥

j

) ∩ (Vj−1 ⊕ Ṽj−1) = (Vj ∩ Ṽj )
⊥ ∩ Yj−1,

so that Ŵj is the orthogonal complement of Vj ∩ V̂j in Yj−1.
Thus L2(C2) = ⊕

j∈Z Ŵj . The basic point of MRA is that whenever a collection of closed
subspaces satisfies

· · · ⊂ Y2 ⊂ Y1 ⊂ Y0 ⊂ Y−1 ⊂ Y−2 ⊂ · · ·∨
j∈Z

Yj = L2(C2)
∧
j∈Z

Yj = {0}
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f ∈ Yj if and only if f (Nj ·) ∈ Y0

f ∈ Y0 then (· − k) ∈ Y0 for every k ∈ Z

there exists φ ∈ Y0 such that {φ0,k : k ∈ Z} is an orthonormal basis in Y0 where φj,k(z) =
N−j φ(N−j z − k).

Then there exists an orthonormal wavelet basis {ψj,k : j, k ∈ Z} of L2(C2), and we may
therefore define the following isomorphism η: C2 → H, where H denotes the quaternions, by
η(z1, z2) = z1 + z2e2 and e2 = (0, 0, 1, 0) ∈ R4. Consider now the space L2(H) equipped
with the usual quaternion inner product: given the filters mi and m̃j we define the following
two matrix functions A and Ã by

Ak,l(z) = 1

N

∑
wN=z

w−lmk(w)

and

Ãk,l (z) = 1

N

∑
wN=z

w−l m̃k(w)

respectively.
They satisfy the following biorthogonality conditions:

N−1∑
k=0

Ak,i(z)Ãk,j (z) = δi,j

and
1

N

∑
wN=z

mi(w) mj (w) = δi,j

1

N

∑
wN=z

m̃i(w) m̃j (w) = δi,j .

Take B = A ⊕ A∗ and B̃ = Ã ⊕ Ã∗ the matrix functions associated with the MRA’s with
filters mi and m̃i respectively.

It can be easily checked for N = 2 that the following equation is satisfied:

BB̃∗ + B̃∗B = 1.

Theorem 5. Let S = (S0, S1, . . . , SN ) and S̃ = (S̃0, S̃1, . . . , S̃N ) be a pair of wavelet
representations on H = L2(C) with invertible loop matrices A and Ã, respectively. Let
S = (S S̃) be the matrix associated with S and S̃ and let P = S∗S + SS∗.

Let T = (T1, T2, . . . , TN−1, T̃1, T̃2, . . . , T̃N−1) be the creation operator on F∈N (H,P).
Then:

T ∗
i Tj |H = (S∗

i−1Sj−1) = (AA∗)i,j T̃ ∗
i T̃j |H = (S̃∗

i−1S̃j−1) = (ÃÃ∗)i,j

Ti T̃
∗
j |H + T̃ ∗

j Ti|H = δi,j 1 where H denotes the space L2(H).
Hence the *-algebra generated by T̃j , j = 1, . . . , N is an oscillator algebra. It has a

representation containing the Cuntz-Toeplitz isometries.

Proof. It is easy to check that the fermion algebra relations hold for the direct sum of wavelet
representations. �

3.2. Construction of q-oscillator algebras

Let us consider the system of wavelet representations S = (S0, S1, . . . , SN) and S̃ =
(S̃0, S̃1, . . . , S̃N ) depending on a real parameter q on L2(C) with invertible loop matrices
A and Ã, respectively.
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Let S = (S0, S1, . . . , SN) and S̃ = (S̃0, S̃1, . . . , S̃N ) be a pair of wavelet representations
on L2(C) with invertible loop matrices A and Ã, respectively. Let us assume that one of them,
say S̃ = (S̃0, S̃1, . . . , S̃N ), depends on a real parameter q and the matrix A is given by

Ãk,l (z) =
∑
wN=z

(qw)−l m̃k(w)

where the m̃j are the filters of the MRA depending on a parameter q as constructed in [7].
Then Ãk,l is a unitary matrix function. The unitarity of the {(1 − q2N)m̃j (tq

j )}i,j=0,...,N−1 is
equivalent to ∑

k

Ãi,k(z)Ãj,k(z) = (1 − q2N)
∑
wN=z

m̃i(w)m̃j (w).

We assume then a generalized biorthogonality holds∑
k

Ai,k(z)Ãj,k(z) = (1 − qN)
∑
wN=z

mi(w)m̃j (w) = δi,j 1.

Let S be the matrix defined as above. Let P = S∗S be the matrix 2N ×2N in B(H) determined
by the wavelet representations such that

S∗S =
(

S∗S 0
0 S̃∗S̃

)
Then we have the following theorem.

Theorem 6. Let S = (S0, S1, . . . , SN ) and S̃ = (S̃0, S̃1, . . . , S̃N ) be a pair of wavelet
representations on L2(C) with invertible loop matrices A and Ã, respectively. Let us assume
that one of them, say S̃ = (S̃0, S̃1, . . . , S̃N), depends on a real parameter q and the matrix A

is given by

Ãk,l (z) =
∑
wN=z

(qw)−l m̃k(w).

Let S be as above and let P = S∗S be the matrix 2N × 2N in B(H).
Let T = (T1, T2, . . . , TN−1, T̃1, T̃2, . . . , T̃N−1) be the creation operator in F∈N (H,P).

Then we have:

T ∗
i Tj |H = (S∗

i−1Sj−1) = (AA∗)i,j T̃ ∗
i T̃j |H = (S̃∗

i−1S̃j−1) = (ÃÃ∗)i,j
T̃iT

∗
j |H − T ∗

j T̃i |H = δi,j [N]q1

Proof. As in lemma 3.5 of [6] we have

(S∗
i−1Sj−1) = (AA∗)i,j

and similarly

(S̃∗
i−1S̃j−1) = (ÃÃ∗)i,j

For 1 � i � N , let Ti be the ith creation operators on the twisted Fock space.
To find the action of T̃ ∗

i on the spanning vectors we consider

〈T̃i(w ⊗ h) | T̃j (w
′ ⊗ h′)〉 = 〈iw ⊗ h | (jw′) ⊗ h′〉

=
〈
h

∣∣∣∣∣
∑

σ

q2σ (i)�
(
ei1,i

′
1
· · · eik,i

′
k

)
h′
〉
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implying

T̃ ∗
j T̃i = δi,j

∑
σ∈SN

q2σ (i) = (1 − q2N)

1 − q2
δi,j

We consider Si and S̃i coming from wavelet analysis.
For 1 � i � N let T̃i and S̃i be the creation operators and the operator coming from the

wavelet construction.
Then

S̃∗
i−1S̃j−1 = (ÃÃ∗)i,j = T̃i T̃

∗
j

Let us describe the action of T̃iT
∗
j on the spanning vectors. Since

〈T ∗
i (w ⊗ h) | w′ ⊗ h′〉 = 〈w ⊗ h | (iw′) ⊗ h′〉

Thus 〈(T̃iT
∗
j )(w ⊗ h) | w′ ⊗ h′〉 can be computed as follows:

〈(T̃iT
∗
j )(w ⊗ h) | w′ ⊗ h′〉 = 〈〈i, j 〉−1w ⊗ h | w′ ⊗ h′〉

× 〈
p−1

i,j wi1,i
′
1
, wi2,i

′
2
, . . . , wik,i

′
k
⊗ h

∣∣w′
i1,i

′
1
, w′

i2,i
′
2
, . . . , w′

ik ,i
′
k
⊗ h′〉

=
〈
(1 − q−N)

(1 − q−1)
(1 − q−1)wi1,i

′
1
, wi2,i

′
2
, . . . , wik,i

′
k
⊗ h

∣∣∣∣
×
∣∣∣∣ w′

i1,i
′
1
, w′

i2,i
′
2
, . . . , w′

ik ,i
′
k
⊗ h′

〉
On the other side we have

〈T ∗
j T̃i(w ⊗ h) | w′ ⊗ h′〉 = 〈(iw) ⊗ h | (jw′) ⊗ h′〉

=
〈
(1 − qN)

(1 − q)
(1 − q)wi1, wi2 , . . . , wik ⊗ h

∣∣∣∣ w′
i′1
, w′

i′2
, . . . , w′

i′k
⊗ h′

〉
thus it follows:

T ∗
j T̃i = 1 − qN

and

T̃iT
∗
j = 1 − q−N.

Hence

T̃iT
∗
j − T ∗

j T̃i = δi,j [N]q1.

Then the creation and annihilation operators T̃i and T ∗
j and N, viewed as a number

operator, yield a representation of the q-oscillator algebra. �

4. Concluding remarks

We have shown how tools from transform theory and wavelet analysis help us in the
construction of new representations of certain q-relations from statistical mechanics. The
q-relations have been studied earlier in connection with quantum fields [1] and statistical
mechanics [12]. In particular, paper [12] serves to show that the q-relations interpolate
between the bosons and the fermions. Further, in [12], the partition function is calculated for
the quons and it is established that it exhibits Gibbs’ paradox. As a result, the corresponding
notions of entropy, free energy and particle number break with our traditional understanding
of thermodynamical quantities.
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[1] Bożejko M and Speicher R 1991 An example of a generalized Brownian motion Comm. Math. Phys. 137 519–31
[2] Bratteli O, Evans D E and Jorgensen P E T 2000 Compactly supported wavelets and representations of the

Cuntz relations Appl. Comput. Harmon. Anal. 8 166–96
[3] Bratteli O and Jorgensen P E T 1997 Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of

scale N Integral Equations Operator Theory 28 382–443
[4] Chari V and Pressley A N 1995 A Guide to Quantum Groups (Cambridge: Cambridge University Press)

corrected reprint of the 1994 original
[5] Daubechies I 1992 Ten lectures on wavelets CBMS-NSF Regional Conf. Series in Applied Mathematics vol 61

(Philadelphia: Society for Industrial and Applied Mathematics)
[6] Jorgensen P E T and Kribs D 2003 Wavelet representations and Fock space on positive matrices J. Funct. Anal.

197 526–59
[7] Jorgensen P E T and Paolucci A 2000 Multiresolution wavelet analysis of Bessel functions of scale ν+1 Preprint

math.FA/0006103
[8] Jorgensen P E T, Schmitt L M and Werner R F 1994 q-canonical commutation relations and stability of the

Cuntz algebra Pacific J. Math. 165 131–51
[9] Bratteli O and Jorgensen P E T 2002 Wavelets through a looking glass: the world of the spectrum Applied and

Numerical Harmonic Analysis (Boston: Birkhäuser)
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